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Abstraet-The bending of plates on a Winkler foundation. according to Kirchholrs theory. is
solved by using an original boundary integral equation method involving the fundamental solution
for plate ftelture problems. An integral representation for the second member (pressure of the
foundation) of the equation is given. By discretizing the integral equation. it is possible to eliminate
the boundary unknowns. so that one is reduced to solving a linear system the solutions of which
are deftections inside the domain. To illustrate the potentialities of this method several problems
with various boundary conditions. loads and values of the modulus of the foundation are successfully
solved.

I. INTRODUCTION

Boundary integral equation formulation is a powerful method for solving problems in
continuum mechanics and particularly the bending of plates. Many formulations have been
developed[1, 2] but the most efficient are due to the simultaneous works given in Refs [3-5].
More recently some authors have treated .the very important problems of the behaviour
of plates on elastic foundations by using the boundary integral equations method. The most
significant works are those of Katsikadelis and Armenakas[6], Costa and Brebbia[7] and
Puttonen and Varpasuo[8] which use the fundamental solution of the differential equation.
This fundamental solution is a Kelvin function of the first order. Although the method
gives good results it presents the disadvantage that the rigidity enters into the fund<lmental
solution. Consequently:

(I) a change of rigidity changes the problems entirely (all the matrices should be
computed once again);

(2) it is not possible to treat a problem in which the rigidity of the foundation is not
a constant.

In this paper a boundary integral equation method is presented which does not have
these disadvantages. The fundamental solution is the one of plate flexure problems (which
does not involve the rigidity of the foundation) and the reactive force of elastic media are
computed as loads per unit area.

Examples are presented and the results are compared with analytical and numerical
solutions for different boundary conditions. Some examples of free boundaries are treated.

2. FORMULATION OF THE PROBLEM

CORsider a plate subject to a transverse load p per unit area and let S be the interior
of the plate and r its boundary. According to Kirchhoff's theory of thin plate bending, the
transverse deflection w is governed by the following differential equation:

PAAw=
D

in S (I)

where A is the Laplacian, p the load per unit area, and D the flexural rigidity defined by
D = Eh)jI2(1- yZ), where h is the constant thickness of the plate, and E and y Young's
modulus and Poisson's ratio, respectively.

557



558 G. BEZI:-lE

[n the case of a plate resting on a Winkler-type elastic foundation. the load p is given by

p = -kw+p (2)

where k is the stiffness of the foundation and p the load applied on the plate. [f the load p
is a concentrated force F applied at a point P. one has p(Q) = F~(P-Q).

Consequently the differential equation of a plate on an elastic foundation is

II' P
~~w = -k- +

D D
in S. (3)

3. BOUNDARY ELEMENT METHOD FOR PLATE BENDING PROBLEMS

Considering eqn (I). the boundary element formulation is now well established[2]. The
foundation of this method is the classical Rayleigh-Green identity generalized to a boundary
with N comers Ai

(4)

By taking for v thc singular function l'(P. Q) = (1/87t)r~ log r onc obtains thc intcgral
rcprcscntation

I N

- D L [wMnt(v) -vMnt(w)],f,
,-I

with fJ = I if Pe Sand fJ = 1/2 if Pe r and by derivation in the no-direction at point P

I ~ [iJMnt(V) vv ]
- - L. II' - - M (11')

D i_ I ann anu nl A,

(5)

(6)

where r = II PQII. P is a fixed point and Q a moving point; n is the outward normal at point
Q and no the outward normal at point P of r; K,,(u) is the KirchhotT transverse shear force
associated with the deflection field u; Mn(u) is the normal flexure moment associated with
the deflection field II; M",(u) is the torsional moment for the deflection field u and [0],1, is
the jump of the function which may occur at corners A, of curvilinear abscissa Si defined
by [011, = (0),,. - (0)" .

Furthermore. the quantity M",(w) at point Q can be expressed in terms of ow/on

d ow
M (11') = -D(I-v) ---

n/ ds on' (7)
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Along the boundary the known quantities att K"(w) and M"(w) on a free edge, wand
M"(w) on a simply supported edge or wand ow/en on a clamped edge. Consequently the
system obtained by eqns (5) and (6) can be solved easily.

4. BOUNDARY ELEMENT METHOD FOR PLATE ON ELASTIC FOUNDATION

A first formulation of this problem consists in taking the suitable fundamental solution
of eqn (3). This solution is known. it includes the Kelvin functions of the second kind, since
it is

with

l·(P,Q) = - _1_J(!!-) Kei(p)
2nD k

. p = r/J(D/k).

(8)

This formulation has been used by all the authors who have treated this problem by
the boundary integral equation method[6-11]. The main objection of this procedure is the
difficulty in the evaluation of the integrals. It is necessary before integration to compute the
Kelvin functions. for instance by their expansion in a Chebyshev series. and this for any
integration point. Moreover. f' involvcs thc valuc of thc stiffncss foundation k. consequently
all the kernels should be computed again when the value of k is modificd.

The formulation proposcd here uses the classical fundamental solution
I' = (I i8n)r2 log r, ,tnd replaces the pressure distribution in the foundation interface by the
load applied at euch node of a mesh used to discretize the plate dom<lin.

In this way eqn (5) lx.-comes

(9)

To solve this new prOblem it is necessary to evaluate the integrals

i \l'
k l'dS.

s D

To do this the integral representation (5) is considered for a point P inside S. The expression
of w(P) is obtained at each point inside the domain. which allows the domain integrals to
be performed.

S. MATRIX FORMULATIONS

5.1. Ma/rixJormultllion ojboundary integral equation
A matrix formulation for eqns (5) and (6) can be obtained by:

(I) a discretization of the boundary into q straight elements at the middle (nodal
points) of which are defined the value of deflection II'. its normal derivative ow/an, bending
moment M"(w) and transverse shear K"(w);

(2) a discretization of the domain S in m rectangular panels at the middle (nodal
points) of which are defined the value of the deflection wand the load per unit area p.
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For eqn (5) one obtains

G. BEZ(~E

and for eqn (6)

I {ew} {ew}2 en = [A r]{Kn}+ [BrJ{ AJn } + [Cr] en + [Dr]{ w} + [Er]{p - kws}·

With eqns (10) and (II) the following formulation is performed:

[Gr]{/} +[lrJ {p} -[lr]{kws} = {OJ-

( 10)

(II)

(12)

where [GrJ is a 2q by 2'1 matrix. [lr] a 2'1 by m matrix. [I] the vector the 2'1 components of
which are the 2q boundary unknowns among w. ewjcn. Mn(n') and Kn(w); {p} and {w}
are vectors of m loads and pressure in the foundation interface. respectively. Subscript r
shows that the matrices are obtained in the case of points P belonging to the boundary.

5.2. MCllrixjormulalion ojdef/eeliofl iI/side S
In the same way as eqn (12) the identity (5) for P inside S can be written following a

matrix formulation:

{lVs} = [Gsl {I} + [lsI {p} - [lsI {kws} ( 13)

where [Gs] is an m by 'I matrix and [lsI an m by m matrix.
The plate bending on an clastic foundation problem consists in solving simultaneously

eqns (12) and (13). since one has (2'1+ m) equations with (2'1 +m) unknowns. Nevertheless
it is more useful to modify the formulation by the elimination of boundary unknowns {I}.

6. ELIMINATION OF BOUNDARY UNKNOWNS

It is possible to solve the system of eqns (12) and (13) which comprises (2q+m)
unknowns. but this leads to numerous equations and their treatment is expensive. In this
case a more convenient method consists of eliminating the unknowns on the boundary. so
as to obtain a smaller system of 111 equations for the 111 unknowns inside the domain.

In this way one can invert the matrix [Grl to obtain from eqn (12)

where [Gi '] is the inverse matrix of [GrJ.
By substituting eqn (14) in eqn (13) one obtains

{ws } = -[GsJ(Grl](Jr]{fi}+(Js]{fi}

- [GsJ(Gr I J(ld {kI~'s} + [ls] {kws}

which can be written in the following linear system of 111 equations as:

(k[K] + [1» {Il's} = - [KI {fi}

where

[K] = [GsHGr lJ(lr]- [ls]

( 14)

( 15)

(16)

( 17)
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and [I} is the identity matrix. When system (16) is solved. the boundary unknowns can be
easily obtained by computing eqn (14).

7. :-';UMERICAl RESOLUTION

The boundary r is approximated by a succession of straight segments q, of centre Qt.
On each segment one has integrals such as

where g(Q) stands for one of the unknowns Il', cw/t·", M" or K". This unknown is supposed
to be constant over each segment. its value being that at the centre Qi of the segment and
the integration of

is carried out by a Gauss-Legendre integration method with ten points.
The domain S is divided into m finite panels. The values of the deflection I\' and of the

load per unit area fl arc defined at the centre point of each panel. Thus taking Il' and p
constant over e.tch panel the surface integrations of kernels arc also performed by'1 Gauss
Legendre method with 6 x 6 integration points.

K. NUMERICAL RESULTS

As applications of the previous formulation rectangular plates on clastic foundation
were studied.

For each problem Poisson's ratio is taken to be 0.3 and all the results for dimensionless
variables x/a .md y/h .tre given where 2a and 2h arc the side lengths and the origin is located
at the centre of the plate.

In all the cases the boundary h.ls been divided into 4X straight segments and the domain
has been divided into 49 (7 x 7) or 77 (II x 7) rectangulur panels. respectively, when h/a = I
or 1.6.

Boundary conditions arc clamped. simply supported or free edges. Results presented
are deflections inside the domain, M" and K" along the edges.

These results arc obtained for different values of k which varies between 0 (docs not
rest on clastic foundation) and 2500D/a~.

8. I. Clamped plate
This ex'lmple has been treated by Costa and Brebbia[7} and with a Galerkin variational

method by Ng[12} for a uniformly loaded square plate.
Results for the variation ofcentre dellection, and at the middle of the edge for bending

moment M,,(ll') and tr.msverse shear force Kn(w) with various modulus k arc shown in Figs
1-3. respectively. One can sec that for k = 200D/a~ the results arc in good .tgreement with
those given in Refs [7, 12) since for centre dellection one has a difference of 5% , and 7%
for the bending moment.

In Fig. 4 the present results arc compared with thosc of Ng[12] for the variation of
centre deflection with h/ll varying between 0 and 2. It can be seen that these results arc in
good agreement.

8.2. Simply supported plate
For this boundary condition the present results arc compared with those of Katsikadelis

and Armenakas[6] for a 2a x 2h rectangular plate with h/a = 1.6. For the modulus coefficient
k = 625D/a~ in Table I are given the value of the deflections at the plate centre and the

'AS .u: 6-a
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Fig. 1. Clamped plate (2a x 2a) : variation of centre deflection with k for a load per unit area p.
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Fig. 2. Clamped phlte (2a x 2a): vllriation of bending moment 1\--'.(",) at a middle side with k for a

load per unit area p.

1.0

"..
'Q.

\"f

0.5
++ ..

+ + .. .. .. + + + + + +

0 500 1000 1500 2000
ka"
D

Fig. 3. Cllimped plate (2a x 2a): variation of transverse shear force K.( ...) at a middle side with k
for a load per unit area fi.
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Fig. 4. Variation or maximum centre deflection with elastic support and aspect ratio for rectangular

plates.

Table I. Simply supported plate (2a x 2b. b/a = 1.6): comparison ordeflection centre values with Rer. [61 rollowing
the application point (XF• Yr) of the concentrated load

X,./a
Yr/h 0 0.2 0.4 0.6 0.8

Prcscnt
work 0.503 x IO-~ 0,324)( 10- 2 0.131)( 10- 2 0.328)( 10-' O.I68x 10- 4

0 [61 0,500 x IO-~ 0.315)( 10- 2 0.(29)( 10 ~ 0.343)( 10'} 0.320 x 10- 4

Percentage 7.5 3 1.5 4

Present
work 0.194x 10- 2 0.149xl() 2 0.649 x IO-~ 0.135 x 10- 1 -0.251)( 10- 4

0.2 [61 0.192 x 10 0.145 x 10 ·2 0.649 x 10 - ~ 0.150x 10 ..1 -O.IOS)( 10 4

Percentage I 3 0.5 10

Prescnt
work 0.200)( 10 .\ 0.139 x 10" 0.1132 x [0-' -0.695 x In' -0.606)( 10"

0,4 [61 0.217)( 10" 0.152 X 10 .. 1 0.266 x [0. 4 -0.499)( 10- 4 -0.4114)( 10"
Pcrcentage II II

Present
work -0.855)( (0- 4 -O.K5Ilx 10-' -0.817)( 10- 4 -0.653)( 10" -0.426)( 10- 4

0.6 [61 -0.732 x 10-- 4 -0.742 x 10-' -0.719)( 10-' -0.582 x Woo, -0.325 x 10- 4

Pereenlage 16 16 14 12

Present
work -0.393)( 10-' -0.376 x 10-' -0.314 x 10-' -0.230x 10'· -0.173 x 10-'

OJl [61 -0.361)( 10-' -0.340)( 10-' -0.281 x 10-' -0.195)( 10- 4 -0.982)( 10- 1

Percentage 9 10 12 18

difference with Katsikadclis and Armenakas' results. obtained for a concentrated load
successively applied in points of coordinates (exa, (Jb) (ex = 0,0.2, 0.4, 0.6. 0.8, and p = 0,
0.2. 0.4. 0.6. 0.8).

One can see very good accuracy for values of ex and P< 0.6. When ex or p= 0.6. results
show a difference up to 20% but it is obvious that values of deflections are very small. and
the disparity becomes greater than for ex = {J = O. In fact for instance, deflection for ex = 0.2,
P=0.6 is 2% of the deflection for ex = fJ =O.

Finally in Fig. 5 the deflection along a symmetry axis is given for k = SODla 4
, 200Dla4

•

500D/a4 and 1500Dla4
•

8.3. Cantilever plate
In this example the problem of a free boundary is solved. Consider a square plate

(2a x 2b, bla = t) loaded by a load per unit area. In Fig. 6 is given the value of deflection
at the point x/a = I. and ylb = 0 (end of the symmetry axis). In Fig. 7 deflections along
the symmetry axis are shown for four values of k (k = SODla4

• 200D/a4
, 500D/a4 and

ISOODla4
).
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Fig. 5. Simply supported plate (2a x 2b. b/a = 1.6): values of deflection on the symmetry axis for
a concentrated load at the centre.
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Fig. 6. Cantilever plate (2a x 2a) : detlL'Ction at the point (x/a = I. y/a = 0) with k for a load per
unit area.
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Fig. 7. Cantilever plate (20 x 2a): values ofdctlection on the symmetry axis for a load per unit area.

9. CONCLUSION

From this study it can be concluded that the previous fonnulation leads to accurate
results. The examples treated are not exhaustive since any problems with mixed boundary
conditions can be studied whatever the domain's shape. This method gives a systematic
procedure to solve the plate on Winkler foundations, and presents all the advantages of the
boundary integral equation method. Moreover. as opposed with earlier works, it can be
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easily extended to foundations with a non-constant rigidity, or to unilateral elastic founda
tion (w ~ 0), by replacing k in eqns (12) and (13) by a diagonal matrix and using if
necessary an iterative process.

Finally if one wants to modify the rigidity of the foundation. it is not necessary to
compute all the matrices in eqns (14) and (15). but only to calculate a new matrix (k[K] + [I])
and to solve the linear system, since k is not included in the fundamental solution contrary
to other integral formulations.
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